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The activation and functionalization of white phosphorus by
N-heterocyclic carbenes1 and carbene-like main group element
fragments2 is of considerable current interest. Carbene-analogous
phosphenium cations display a pronounced ambiphilic nature which
renders their behavior both Lewis acidic and Lewis basic. Their
electrophilic character comes to the fore in element-element bond
insertion reactions,3 making them interesting species for the
systematic investigation of P4 functionalization. Only recently, the
first structurally characterized inorganic cationic P5 cluster [P5Br2]+

was obtained Via phosphenium insertion by Krossing and co-
workers.4 Our solvent-free approach to consecutively insert the
phosphenium cation [Ph2P]+ into P-P5a,b bonds of P4 resulted in
the formation of unprecedented phosphorus-rich cationic clusters
[Ph2P5]+, [Ph4P6]2+, and [Ph6P7]3+.5c In this communication, we
report on the functionalization of P4 formally through the cationic
bifunctional Lewis acid [DippNP]2

2+ obtained from cyclo-1,3-
diphospha-2,4-diazane [DippNPCl]2 (1). This has enabled the
targeted preparation of novel mono- and dicationic phosphorus-
rich clusters 3[GaCl4]•C6H5F and 4[Ga2Cl7]2 (Scheme 1).

Cyclic phosphenium cation 2 can be generated from 1 in the
presence of the Lewis acid GaCl3.

6 The addition of one eq. GaCl3

to a solution of 1 in C6H5F afforded an instant color change of the
initially colorless solution to deep red. 31P{1H} NMR investigation
of the reaction mixture showed a new broad signal (C6D6 capillary,
rt, δ ) 242.3 ppm, ∆ν1/2 ) 104 Hz) shifted downfield compared
to the sharp signal of 1 (cis isomer, δ ) 210.5 ppm, ∆ν1/2 ) 10
Hz),7 indicating the formation of cation 2.8a The subsequent addition
of one eq. P4 gave rise to a clear, pale orange solution within 2 h
(Scheme 1). The 31P NMR spectrum of the reaction mixture revealed
the exclusive formation of monocation 3, which showed an
A2MVXZ spin system (δA ) -346.7 ppm, δM ) 85.1 ppm, δV )
152.7 ppm, δX ) 168.2 ppm, δZ ) 197.5 ppm; 1JAV ) -139.7 Hz,
1JAX ) -139.9 Hz, 1JMV ) -282.5 Hz, 1JMX ) -293.4 Hz, 2JAM

) 16.4 Hz, 2JVX ) 57.0 Hz, Figure 1).8b,9 The resonances for this
spin system are in an approximate ratio of 2:1:1:1:1. Similar to
other N2P2 systems,7,10 the two ring phosphorus atoms of 3 do not
couple, resulting in the observation of a singlet for the tri-coordinate
phosphorus atom (s, δZ ) 197.5 ppm). The very air- and moisture-
sensitive material was isolated as the [GaCl4]- salt as fluorobenzene
solvate.

A single-crystal X-ray study of [3][GaCl4]•C6H5F (Figure 2)
confirmed the insertion of 2 into one of the P-P bonds of P4. The
structural features of the P5 core are comparable to [Ph2P5]+.5c The
P-P bonds involving the four-coordinate phosphorus center P1 and
the P4-P5 bond (2.1462(7) - 2.164(1) Å) are significantly shorter
than the remaining P-P bonds (2.2461(8) - 2.2535(8) Å).
Comparably short P-P distances have been observed in other
compounds with cationic four-coordinate phosphorus centers and
strained phosphorus cages.2i,11 The P-N bonds between the tri-
coordinate phosphorus atom P6 and N1 or N2 (1.733(2), 1.732(2)
Å) are typical for neutral diphosphadiazanes.12 In contrast, the P-N
bonds involving the phosphonium center P1 are significantly shorter
(1.662(2), 1.669(2) Å).

Scheme 1. Reaction of 1 with GaCl3 and P4
a

a (i) 1 eq. GaCl3, C6H5F, rt, 10 min, (ii) 1 eq. P4, C6H5F, rt, 2 h; (iii) 3
eq. GaCl3, P4 C6H5F, rt, 6 h.

Figure 1. 31P NMR spectrum of cation 3 (in C6H5F, C6D6-capillary, 25
°C; 161.94 MHz). Full spectrum (bottom) and expansions (inset) showing
the experimental (up) and fitted (down) spectra;9 a very small amount of
an unidentified side-product is indicated by an asterisk.8b

Figure 2. ORTEP plot of the molecular structure of the cation 3 in
3[GaCl4] ·C6H5F. Thermal ellipsoids at 50% probability (hydrogen atoms,
counteranion and C6H5F omitted for clarity). Selected bond lengths (Å):
P6-Cl1 2.0788(7), P6-N1 1.733(2), P6-N2 1.732 (2), P1-N1 1.669(2),
P1-N2 1.662(2), P1-P2 2.1518(7), P1-P3 2.1462(7), P2-P4 2.2535(8),
P2-P5 2.2461(8), P3-P4 2.2484(8), P3-P5 2.2472(8), P4-P5
2.164(1).

Published on Web 09/23/2009

10.1021/ja906878q CCC: $40.75  2009 American Chemical Society14210 9 J. AM. CHEM. SOC. 2009, 131, 14210–14211



The reaction of two equiv. of P4 with cation 2 and an excess of
Lewis acid (2, GaCl3 1:4) in C6H5F resulted in the formation of a
pale-yellow solution with small amounts of orange-yellow precipi-
tate (Scheme 1). The 31P{1H} NMR spectrum of the filtrate is
depicted in Figure 3. Beside the resonances of monocation 3, signals
of a new A2MX2 spin system (δA ) -341.8 ppm, δM ) 67.4 ppm,
δX ) 142.3 ppm; 1JAX ) -320.3 Hz, 1JMX ) -135.2 Hz, 2JAM )
21.9 Hz) in a ratio of 2:1:2 indicate the formation of a new species
in approximately 60% yield.8b The resonances for the A2MX2 spin
system are consistent with two C2v-symmetric P5 cages bridged by
two imido groups, suggesting the formation of dication 4 (Figure
3). 4[Ga2Cl7] crystallized as a conglomerate with 3[GaCl4]. The
postulated structure in solution was confirmed by X-ray diffraction
(Figure 4). To our knowledge, dication 4 represents the first
structurally characterized example of two homoatomic P5 cages
fused Via an imido bridge. In the solid state, dication 4 is
centrosymmetric, consistent with the A2MX2 pattern observed in
the 31P{1H} NMR spectrum. The bond lengths and angles in the
P5 cores of dication 4 follow a similar trend as observed for
monocation 3. The N2P2 ring is planar with a short P1-N1 bond
(1.684(2) Å). The pronounced short character of the P-N bonds
in the P2N2 core might account for an increased reactivity. In
solution, dication 4 is not very stable and readily decomposes to
an insoluble orange material at room temperature. The 31P{1H}
NMR spectrum of the reactions mixture after ∼12 h shows
an additional complex set of signals. This indicates the formation
of a further oligomer which we believe to be cation
[(DippNP)3(P4)Cl2]+, presumably resulting from a condensation of
cations 2 and 4. This unusual process is currently being investigated.
Details will be reported in a subsequent full paper.

In summary, the synthesis of the unique phosphorus-rich
organophosphorus cation 4 has been achieved by stepwise insertion

of the disguised bifunctional Lewis acid [DippNP]2
2+ into the P-P

bonds of two P4 tetrahedra. The utilization of bifunctional phos-
phenium cations13 represents a rational and potentially versatile
synthetic method for the assembly of large clusters using P4 as a
building block. Due to the cationic charge such cluster may be
amenable to a host of subsequent transformations. Studies directed
at the synthesis of further cationic clusters and the reactivity of 3
and 4 are in progress.
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Figure 3. 31P{1H} NMR spectrum of 3[GaCl4] and 4[Ga2Cl7]2 (in C6H5F,
C6D6-capillary, 25 °C; 161.94 MHz); very small amounts of unidentified
side-products are indicated by an asterisk.8b

Figure 4. ORTEP plot of the molecular structure of the cation 4 in
4[Ga2Cl7]2. Thermal ellipsoids at 50% probability (hydrogen atoms and
counteranions omitted for clarity). Selected bond lengths (Å): N1-P1
1.684(2), P1-P2 2.1388(7), P1-P3 2.1380(7), P2-P4 2.2603(8), P2-P5
2.2450(8), P3-P4 2.2598(8), P3-P5 2.2425(8), P4-P5 2.1659(9); [sym-
metry code: (i) -x,-y+1,-z].
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