

Published on Web 09/23/2009

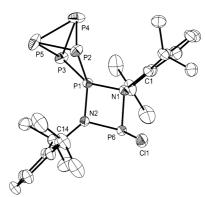
Preparation of the $[(DippNP)_2(P_4)_2]^{2+}$ -Dication by the Reaction of $[DippNPCI]_2$ and a Lewis Acid with P₄

Michael H. Holthausen and Jan J. Weigand*

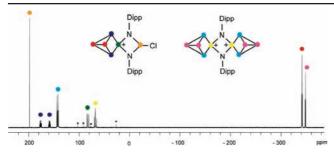
Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149 Münster, Germany

Received August 21, 2009; E-mail: jweigand@uni-muenster.de

The activation and functionalization of white phosphorus by N-heterocyclic carbenes¹ and carbene-like main group element fragments² is of considerable current interest. Carbene-analogous phosphenium cations display a pronounced ambiphilic nature which renders their behavior both Lewis acidic and Lewis basic. Their electrophilic character comes to the fore in element-element bond insertion reactions,³ making them interesting species for the systematic investigation of P₄ functionalization. Only recently, the first structurally characterized inorganic cationic P₅ cluster [P₅Br₂]⁺ was obtained via phosphenium insertion by Krossing and coworkers.⁴ Our solvent-free approach to consecutively insert the phosphenium cation $[Ph_2P]^+$ into $P-P^{5a,b}$ bonds of P_4 resulted in the formation of unprecedented phosphorus-rich cationic clusters $[Ph_2P_5]^+$, $[Ph_4P_6]^{2+}$, and $[Ph_6P_7]^{3+.5c}$ In this communication, we report on the functionalization of P4 formally through the cationic bifunctional Lewis acid [DippNP]₂²⁺ obtained from *cyclo*-1,3diphospha-2,4-diazane [DippNPCl]₂ (1). This has enabled the targeted preparation of novel mono- and dicationic phosphorusrich clusters 3[GaCl₄]•C₆H₅F and 4[Ga₂Cl₇]₂ (Scheme 1).



 a (i) 1 eq. GaCl₃, C₆H₅F, rt, 10 min, (ii) 1 eq. P₄, C₆H₅F, rt, 2 h; (iii) 3 eq. GaCl₃, P₄ C₆H₅F, rt, 6 h.


Cyclic phosphenium cation 2 can be generated from 1 in the presence of the Lewis acid GaCl₃.⁶ The addition of one eq. GaCl₃ to a solution of 1 in C₆H₅F afforded an instant color change of the initially colorless solution to deep red. ³¹P{¹H} NMR investigation of the reaction mixture showed a new broad signal (C₆D₆ capillary, rt, $\delta = 242.3$ ppm, $\Delta v_{1/2} = 104$ Hz) shifted downfield compared to the sharp signal of 1 (*cis* isomer, $\delta = 210.5$ ppm, $\Delta v_{1/2} = 10$ Hz),⁷ indicating the formation of cation 2.^{8a} The subsequent addition of one eq. P₄ gave rise to a clear, pale orange solution within 2 h (Scheme 1). The ³¹P NMR spectrum of the reaction mixture revealed the exclusive formation of monocation 3, which showed an A₂MVXZ spin system ($\delta_A = -346.7$ ppm, $\delta_M = 85.1$ ppm, $\delta_V =$ 152.7 ppm, $\delta_{\rm X} = 168.2$ ppm, $\delta_{\rm Z} = 197.5$ ppm; ${}^{1}J_{\rm AV} = -139.7$ Hz, ${}^{1}J_{AX} = -139.9$ Hz, ${}^{1}J_{MV} = -282.5$ Hz, ${}^{1}J_{MX} = -293.4$ Hz, ${}^{2}J_{AM}$ = 16.4 Hz, ${}^{2}J_{VX}$ = 57.0 Hz, Figure 1).^{8b,9} The resonances for this spin system are in an approximate ratio of 2:1:1:1:1. Similar to other N_2P_2 systems,^{7,10} the two ring phosphorus atoms of **3** do not couple, resulting in the observation of a singlet for the tri-coordinate phosphorus atom (s, $\delta_Z = 197.5$ ppm). The very air- and moisturesensitive material was isolated as the [GaCl₄]⁻ salt as fluorobenzene solvate.

e e h e n s e **Figure 1.** ³¹P NMR spectrum of cation **3** (in C₆H₃F, C₆D₆-capillary, 25 °C; 161.94 MHz). Full spectrum (bottom) and expansions (inset) showing the experimental (up) and fitted (down) spectra;⁹ a very small amount of an unidentified side-product is indicated by an asterisk.^{8b} A single-crystal X-ray study of [**3**][GaCl₄]•C₆H₅F (Figure 2)

A single-crystal X-ray study of [3][GaCl₄]•C₆H₅F (Figure 2) confirmed the insertion of **2** into one of the P–P bonds of P₄. The structural features of the P₅ core are comparable to $[Ph_2P_5]^{+,5c}$ The P–P bonds involving the four-coordinate phosphorus center P1 and the P4–P5 bond (2.1462(7) – 2.164(1) Å) are significantly shorter than the remaining P–P bonds (2.2461(8) – 2.2535(8) Å). Comparably short P–P distances have been observed in other compounds with cationic four-coordinate phosphorus centers and strained phosphorus cages.^{2i,11} The P–N bonds between the tricoordinate phosphorus atom P6 and N1 or N2 (1.733(2), 1.732(2) Å) are typical for neutral diphosphadiazanes.¹² In contrast, the P–N bonds involving the phosphonium center P1 are significantly shorter (1.662(2), 1.669(2) Å).

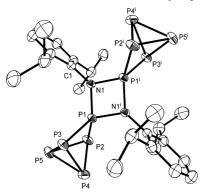

Figure 2. ORTEP plot of the molecular structure of the cation **3** in $3[GaCl_4] \cdot C_6H_5F$. Thermal ellipsoids at 50% probability (hydrogen atoms, counteranion and C_6H_5F omitted for clarity). Selected bond lengths (Å): P6-Cl1 2.0788(7), P6-N1 1.733(2), P6-N2 1.732 (2), P1-N1 1.669(2), P1-N2 1.662(2), P1-P2 2.1518(7), P1-P3 2.1462(7), P2-P4 2.2535(8), P2-P5 2.2461(8), P3-P4 2.2484(8), P3-P5 2.2472(8), P4-P5 2.164(1).

Figure 3. ³¹P{¹H} NMR spectrum of **3**[GaCl₄] and **4**[Ga₂Cl₇]₂ (in C₆H₅F, C₆D₆-capillary, 25 °C; 161.94 MHz); very small amounts of unidentified side-products are indicated by an asterisk.^{8b}

The reaction of two equiv. of P_4 with cation 2 and an excess of Lewis acid (2, GaCl₃ 1:4) in C_6H_5F resulted in the formation of a pale-yellow solution with small amounts of orange-yellow precipitate (Scheme 1). The ³¹P{¹H} NMR spectrum of the filtrate is depicted in Figure 3. Beside the resonances of monocation 3, signals of a new A₂MX₂ spin system ($\delta_A = -341.8$ ppm, $\delta_M = 67.4$ ppm, $\delta_{\rm X} = 142.3$ ppm; ${}^{1}J_{\rm AX} = -320.3$ Hz, ${}^{1}J_{\rm MX} = -135.2$ Hz, ${}^{2}J_{\rm AM} =$ 21.9 Hz) in a ratio of 2:1:2 indicate the formation of a new species in approximately 60% yield.^{8b} The resonances for the A₂MX₂ spin system are consistent with two C_{2v} -symmetric P₅ cages bridged by two imido groups, suggesting the formation of dication 4 (Figure 3). $4[Ga_2Cl_7]$ crystallized as a conglomerate with $3[GaCl_4]$. The postulated structure in solution was confirmed by X-ray diffraction (Figure 4). To our knowledge, dication 4 represents the first structurally characterized example of two homoatomic P_5 cages fused via an imido bridge. In the solid state, dication 4 is centrosymmetric, consistent with the A2MX2 pattern observed in the ${}^{31}P{}^{1}H$ NMR spectrum. The bond lengths and angles in the P5 cores of dication 4 follow a similar trend as observed for monocation 3. The N₂P₂ ring is planar with a short P1-N1 bond (1.684(2) Å). The pronounced short character of the P–N bonds in the P2N2 core might account for an increased reactivity. In solution, dication 4 is not very stable and readily decomposes to an insoluble orange material at room temperature. The ${}^{31}P{}^{1}H$ NMR spectrum of the reactions mixture after ~ 12 h shows an additional complex set of signals. This indicates the formation of a further oligomer which we believe to be cation $[(DippNP)_3(P_4)Cl_2]^+$, presumably resulting from a condensation of cations 2 and 4. This unusual process is currently being investigated. Details will be reported in a subsequent full paper.

In summary, the synthesis of the unique phosphorus-rich organophosphorus cation **4** has been achieved by stepwise insertion

Figure 4. ORTEP plot of the molecular structure of the cation **4** in $4[Ga_2Cl_7]_2$. Thermal ellipsoids at 50% probability (hydrogen atoms and counteranions omitted for clarity). Selected bond lengths (Å): N1–P1 1.684(2), P1–P2 2.1388(7), P1–P3 2.1380(7), P2–P4 2.2603(8), P2–P5 2.2450(8), P3–P4 2.2598(8), P3–P5 2.2425(8), P4–P5 2.1659(9); [symmetry code: (i) -x, -y+1, -z].

of the disguised bifunctional Lewis acid $[DippNP]_2^{2+}$ into the P–P bonds of two P₄ tetrahedra. The utilization of bifunctional phosphenium cations¹³ represents a rational and potentially versatile synthetic method for the assembly of large clusters using P₄ as a building block. Due to the cationic charge such cluster may be amenable to a host of subsequent transformations. Studies directed at the synthesis of further cationic clusters and the reactivity of **3** and **4** are in progress.

Acknowledgment. We gratefully acknowledge the Alexander von Humboldt-Foundation (Feodor Lynen Return Fellowship for J.J.W.), the FCI (Liebig fellowship for J.J.W.), the European Phosphorus Science Network (PhoSciNet CM0802), and the International Research Training Group (IRTG 1444). J.J.W. thanks Prof. F. Ekkehardt Hahn (WWU Münster) for his generous support and advice. We thank Dr. Robert Wolf for helpful discussions.

Supporting Information Available: Full experimental and spectroscopic data for compounds $2[Ga_2Cl_7]$ and $3[GaCl_4] \cdot C_6H_5F$ and selected data for $4[Ga_2Cl_7]_2$ (including ${}^{31}P-{}^{31}P$ DQF COSY), and X-ray crystallographic data for $3[GaCl_4]$ and $4[Ga_2Cl_7]_2$ (CCDC numbers 743848, 743849). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Masuda, J. D.; Schoeller, W. W.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2007, 46, 7052. (b) Dyker, C. A.; Bertrand, G. Science 2008, 321, 1050. (c) Masuda, J. D.; Schoeller, W. W.; Donnadieu, B.; Bertrand, G. J. Am. Chem. Soc. 2007, 129, 14180. (d) Back, O.; Kuchenbeiser, G.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2009, 48, 5530.
- (2) (a) Dohmeier, C.; Schnöckel, H.; Robl, C.; Schneider, U.; Ahlrichs, R. Angew. Chem., Int. Ed. Engl. 1994, 33, 199. (b) Peng, Y.; Fan, H.; Zhu, H.; Roesky, H. W.; Magull, J.; Hughes, C. E. Angew. Chem., Int. Ed. 2004, 43, 3443. (c) Power, M. B.; Barron, A. R. Angew. Chem., Int. Ed. Engl. 1991, 30, 1353. (d) Uhl, W.; Benter, M. Chem. Commun. 1999, 771. (e) Fox, A. R.; Wright, R. J.; Rivard, E.; Power, P. P. 117, 7907; Angew. Chem., Int. Ed. 2005, 44, 7729. (f) Wiberg, N.; Wörner, A.; Karaghiosoff, K.; Fenske, D. Chem. Ber. 1997, 130, 135. (g) Lerner, H.-W.; Bolte, M.; Karaghiosoff, K.; Wagner, M. Organometallics 2004, 23, 6073. (h) Chan, W. T. K.; García, F.; Hopkins, A. D.; Martin, L. C.; McPartlin, M.; Wright, D. S. Angew. Chem., Int. Ed. 2007, 46, 3084. (i) Xiong, Y.; Yao, S.; Brym, M.; Driess, M. Angew. Chem., Int. Ed. 2007, 46, 4511.
- (3) Gudat, D. Eur. J. Inorg. Chem. 1998, 1087.
- (4) (a) Krossing, I.; Raabe, I. Angew. Chem., Int. Ed. 2001, 40, 4406. (b) Gonsior, M.; Krossing, I.; Müller, L.; Raabe, I.; Jansen, M.; van Wuellen, L. Chem.-Eur. J. 2002, 8, 4475.
- (5) (a) Weigand, J. J.; Burford, N.; Lumsden, M. D.; Decken, A. Angew. Chem., Int. Ed. 2006, 45, 6733. (b) Weigand, J. J.; Burford, N.; Decken, A. Eur. J. Inorg. Chem. 2008, 4343. (c) Weigand, J. J.; Holthausen, M.; Fröhlich, R. Angew. Chem., Int. Ed. 2009, 48, 295.
- (6) (a) Michalik, D.; Schulz, A.; Villinger, A.; Weding, N. Angew. Chem., Int. Ed. 2008, 47, 6465. (b) David, G.; Niecke, E.; Nieger, M.; von der Gönna, V.; Schoeller, W. W. Chem. Ber. 1993, 126, 1513. (c) Burford, N.; Landry, J. C.; Ferguson, M. J.; McDonald, R. Inorg. Chem. 2005, 44, 5897. (d) Burford, N.; Conroy, K. D.; Landry, J. C.; Ragona, P. J.; Ferguson, M. J.; McDonald, R. Inorg. Chem. 2004, 43, 8245.
- (7) Burford, N.; Cameron, T. S.; Conroy, K. D.; Ellis, B.; MacDonald, C. L. B.; Ovans, R.; Phillips, A. D.; Ragogna, P. J.; Walsh, D. Can. J. Chem. 2002, 80, 1404.
- (8) (a) Only a broad signal for 2 is observed in the ³¹P{¹H} NMR spectrum due to fluxional behaviour. The observed chemical shift strongly depends on the GaCl₃ concentration. Cation 2 was isolated as 2[Ga₂Cl₇] when more than 2eq. of GaCl₃ are used. (b) For experimental details and spectroscopic data see Supporting Information.
- (9) Budzelaar, P. H. M. gNMR for Windows, version 5.0.6.0; NMR Simulation Program; IvorySoft: Budzelaar, 2006.
- (10) Burford, N.; Clyburne, J. A. C.; Chan, M. S. W. Inorg. Chem. 1997, 36, 3204.
- (11) (a) Niecke, E.; Rüger, R.; Krebs, B. Angew. Chem., Int. Ed. Engl. 1982, 21, 544. (b) Schoeller, W. W.; Staemmler, V.; Rademacher, P.; Niecke, E. Inorg. Chem. 1986, 25, 4382. (c) Dyker, C. A.; Burford, N. Chem. Asian J. 2008, 3, 28, and references therein.
- (12) (a) Vijjulatha, M.; Kumara Swamy, K. C.; Vittal, J. J.; Koh, L. L. Polyhedron **1999**, *18*, 2249. (b) Thompson, M. L.; Tarassoli, A.; Haltiwanger, R. C.; Norman, A. D. J. Am. Chem. Soc. **1981**, *103*, 6770.
- (13) Davidson, R. J.; Weigand, J. J.; Burford, N.; Cameron, T. S.; Decken, A.; Werner-Zwanziger, U. Chem. Commun. 2007, 4671.

JA906878Q